Search results for "gradient term"

showing 8 items of 8 documents

Nonlinear elliptic equations having a gradient term with natural growth

2006

Abstract In this paper, we study a class of nonlinear elliptic Dirichlet problems whose simplest model example is: (1) { − Δ p u = g ( u ) | ∇ u | p + f , in Ω , u = 0 , on ∂ Ω . Here Ω is a bounded open set in R N ( N ⩾ 2 ), Δ p denotes the so-called p-Laplace operator ( p > 1 ) and g is a continuous real function. Given f ∈ L m ( Ω ) ( m > 1 ), we study under which growth conditions on g problem (1) admits a solution. If m ⩾ N / p , we prove that there exists a solution under assumption (3) (see below), and that it is bounded when m > N p ; while if 1 m N / p and g satisfies the condition (4) below, we prove the existence of an unbounded generalized solution. Note that no smallness condit…

Dirichlet problemMathematics(all)Pure mathematicsApplied MathematicsGeneral MathematicsWeak solutionNonlinear elliptic operatorsMathematical analysisGradient term; Nonlinear elliptic operators; Unbounded solutionsType (model theory)Elliptic curveElliptic operatorCompact spaceUnbounded solutionsSettore MAT/05 - Analisi MatematicaBounded functionp-LaplacianGradient termMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Equivalence of viscosity and weak solutions for a $p$-parabolic equation

2019

AbstractWe study the relationship of viscosity and weak solutions to the equation $$\begin{aligned} \smash {\partial _{t}u-\varDelta _{p}u=f(Du)}, \end{aligned}$$ ∂ t u - Δ p u = f ( D u ) , where $$p>1$$ p > 1 and $$f\in C({\mathbb {R}}^{N})$$ f ∈ C ( R N ) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when $$p\ge 2$$ p ≥ 2 .

viscosity solutionosittaisdifferentiaaliyhtälötPure mathematics35K92 35J60 35D40 35D30 35B51Mathematics::Analysis of PDEscomparison principleweak solutionparabolic p-LaplacianViscosityMathematics (miscellaneous)Mathematics - Analysis of PDEsBounded functionFOS: Mathematicsgradient termEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Bounded solutions to the 1-Laplacian equation with a critical gradient term

2012

General MathematicsBounded functionMathematical analysisLaplace operator1-laplacian; degenerate elliptic equations; functions of bounded variations; gradient term with natural growthMathematicsTerm (time)Asymptotic Analysis
researchProduct

Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term

2006

We study existence and regularity of distributional solutions for possibly degenerate quasi-linear parabolic problems having a first order term which grows quadratically in the gradient. The model problem we refer to is the following (1){ut−div(α(u)∇u)=β(u)|∇u|2+f(x,t),in Ω×]0,T[;u(x,t)=0,on ∂Ω×]0,T[;u(x,0)=u0(x),in Ω. Here Ω is a bounded open set in RN, T>0. The unknown function u=u(x,t) depends on x∈Ω and t∈]0,T[. The symbol ∇u denotes the gradient of u with respect to x. The real functions α, β are continuous; moreover α is positive, bounded and may vanish at ±∞. As far as the data are concerned, we require the following assumptions: ∫ΩΦ(u0(x))dx<∞ where Φ is a convenient function which …

Quadratic growthNonlinear parabolic problems; gradient term with quadratic growth; existence and regularity; bounded and unbounded solutions; lack of coercivenesstermine quadratico nel gradienteApplied MathematicsOperator (physics)existence and regularityMathematical analysisDegenerate energy levelsFunction (mathematics)equazioni parabolichebounded and unbounded solutionsParabolic partial differential equationBounded functioncoercività degenerePrincipal partOrder (group theory)gradient term with quadratic growthNonlinear parabolic problemsMathematical PhysicsAnalysislack of coercivenessMathematics
researchProduct

Towards Mechanical Modelling for Fractional Hereditariness of Lipid Membranes

2014

Viscoelastic biological membranes Fractional hereditariness gradient termsSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term

2001

Abstract Our aim in this article is to study the following nonlinear elliptic Dirichlet problem: − div [a(x,u)·∇u]+b(x,u,∇u)=f, in Ω; u=0, on ∂Ω; where Ω is a bounded open subset of RN, with N>2, f∈L m (Ω) . Under wide conditions on functions a and b, we prove that there exists a type of solution for this problem; this is a bounded weak solution for m>N/2, and an unbounded entropy solution for N/2>m⩾2N/(N+2). Moreover, we show when this entropy solution is a weak one and when can be taken as test function in the weak formulation. We also study the summability of the solutions.

Bounded and unbounded solutionsQuasi-linear elliptic problemsDirichlet problemMathematics(all)Pure mathematicsApplied MathematicsGeneral MathematicsWeak solutionMathematical analysisQuadratic functionWeak formulationNonlinear systemElliptic curveQuadratic equationBounded functionQuadratic gradient termMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Existence and comparison results for a singular semilinear elliptic equation with a lower order term

2014

This paper deals with the homogeneous Dirichlet problem for a singular semilinear elliptic equation with a first order term. When the datum is bounded we prove an existence result and we show that any solution can be compared with the solution to a suitable symmetrized problem.

Dirichlet problemSharp a priori estimatesSingular elliptic problems with gradient termApplied MathematicsGeneral MathematicsNumerical analysisMathematical analysisMathematics::Analysis of PDEsGeodetic datumSymmetrizationTerm (time)Elliptic curveSingular solutionSettore MAT/05 - Analisi MatematicaBounded functionSymmetrizationMathematics
researchProduct

Elliptic equations having a singular quadratic gradient term and a changing sign datum

2012

In this paper we study a singular elliptic problem whose model is \begin{eqnarray*} - \Delta u= \frac{|\nabla u|^2}{|u|^\theta}+f(x), in \Omega\\ u = 0, on \partial \Omega; \end{eqnarray*} where $\theta\in (0,1)$ and $f \in L^m (\Omega)$, with $m\geq \frac{N}{2}$. We do not assume any sign condition on the lower order term, nor assume the datum $f$ has a constant sign. We carefully define the meaning of solution to this problem giving sense to the gradient term where $u=0$, and prove the existence of such a solution. We also discuss related questions as the existence of solutions when the datum $f$ is less regular or the boundedness of the solutions when the datum $f \in L^m (\Omega)$ with …

Dirichlet problemPure mathematicsApplied MathematicsMathematical analysissingularity at zeroMathematics::Analysis of PDEsGeodetic datumTerm (logic)Omegadata with non-constant signdata with non-constant sign; dirichlet problem; singularity at zero; gradient termQuadratic equationgradient termNabla symboldirichlet problemConstant (mathematics)AnalysisMathematicsSign (mathematics)Communications on Pure and Applied Analysis
researchProduct